

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0957 of 22 November 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Friulsider Injection system KEM HYBRID for concrete

Bonded anchor for use in concrete

Friulsider S.p.A. Via Trieste 1 33048 SAN. GIOVANNI AL NATISONE ITALIEN

Friulsider S.p.A. Plant 1 Germany

32 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-16/0957 issued on 11 April 2017

European Technical Assessment ETA-16/0957 English translation prepared by DIBt

Page 2 of 32 | 22 November 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z71499.19 8.06.01-294/19

European Technical Assessment ETA-16/0957

Page 3 of 32 | 22 November 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Friulsider Injection system KEM HYBRID for concrete" is a bonded anchor consisting of a cartridge with injection mortar KEM HYBRID and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter Ø8 to Ø32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load	See Annex			
(static and quasi-static loading)	C 1, C 2, C 3, C 5, C 7			
Characteristic resistance to shear load	See Annex			
(static and quasi-static loading)	C 1, C 4, C 6, C 8			
Displacements	See Annex			
(static and quasi-static loading)	C 9 to C 11			
Characteristic resistance and displacements for seismic	See Annex			
performance category C1 and C2	C 12 to C 17			
Durability	See Annex			
	B 1			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Z71499.19 8.06.01-294/19

European Technical Assessment ETA-16/0957

Page 4 of 32 | 22 November 2019

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

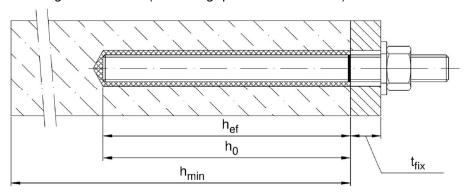
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

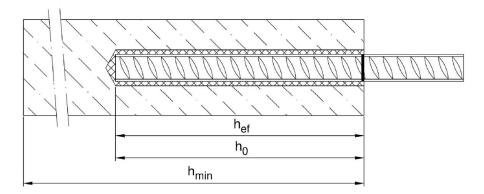
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 22 November 2019 by Deutsches Institut für Bautechnik

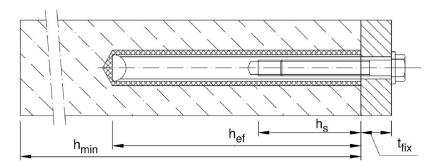
BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Baderschneider

Z71499.19 8.06.01-294/19



Installation threaded rod M8 up to M30


prepositioned installation or push through installation (annular gap filled with mortar)

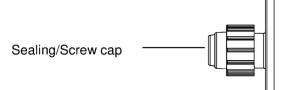
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

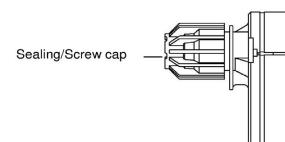
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

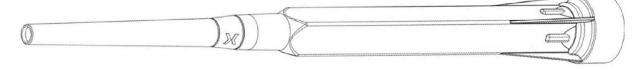
 $h_0 = depth of drill hole$


 h_{min} = minimum thickness of member

Annex A 1


Cartridge: KEM HYBRID

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

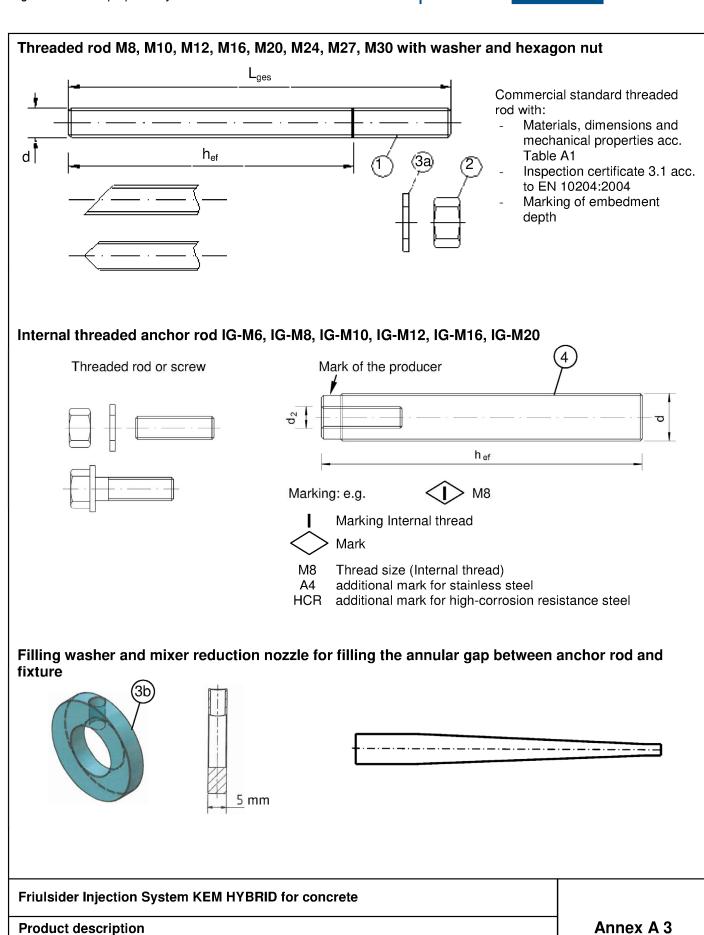

Imprint: KEM HYBRID, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Imprint: KEM HYBRID, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

Piston plug and mixer extension


Friulsider Injection System KEM HYBRID for concrete

Product description

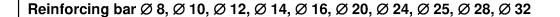
Injection system

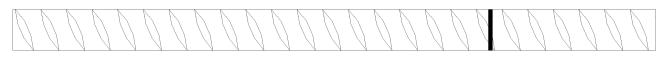
Annex A 2

Z71621.19 8.06.01-294/19

Threaded rod, internal threaded rod and filling washer

Table A1: Materials									
	Designation	Material							
- zii - ho	nc plated ≥ tot-dip galvanised ≥ 4	acc. to EN 10087:1998 5 μm acc. to EN ISO 4 40 μm acc. to EN ISO 4 45 μm acc. to EN ISO	4042: 1461:	1999 or 2009 and EN ISO 10684:2	004+AC:2009 or				
		Property class	Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture				
			4.6	f _{uk} = 400 N/mm ²	f _{yk} = 240 N/mm ²	A ₅ > 8%			
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%			
	THI GUAGA TOA	acc. to EN ISO 898-1:2013		f _{uk} = 500 N/mm ²	f _{vk} = 300 N/mm ²	A ₅ > 8%			
		EN 150 696-1.2013		f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%			
				f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ ≥ 12% ³⁾			
		and to	4	for threaded rod class 4.6	or 4.8	1			
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod class 5.6					
			8	for threaded rod class 8.8					
3a	Washer	(e.g.: EN ISO 887:2006	6, EN	alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 70	094:2000)			
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	0	le			
4	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4	anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{yk} = 400 \text{ N/mm}^2$	A ₅ > 8%			
		EN ISO 898-1:2013	8.8	$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	A ₅ > 8%			
Stail	nless steel A4 (Mate	erial 1.4401 / 1.4404 / 1.4	4571 .	/ 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-	EN 10088-1:2014)				
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
1	Threaded rod ¹⁾⁴⁾	_		f _{uk} = 500 N/mm ²	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%			
		acc. to EN ISO 3506-1:2009	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ ≥ 12% ³⁾			
		LIN 100 0000-1.2009	80	f _{uk} = 800 N/mm ²	f _{yk} = 600 N/mm ²	A ₅ ≥ 12% ³⁾			
		acc to	50	for threaded rod class 50		·			
2	Hexagon nut 1)4)	acc. to EN ISO 3506-1:2009	70	for threaded rod class 70					
				for threaded rod class 80	I	004.4			
3a	A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014 HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)								
3b	Filling washer	Stainless steel A4, Hig	h corr		Ta.	Γ			
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture			
4	Internal threaded	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	f _{yk} = 210 N/mm ²	A ₅ > 8%			
•	anchor rod ¹⁾²⁾	EN ISO 3506-1:2009	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%			


¹⁾ Property class 70 or 80 for threaded rods up to M24 and Internal threaded anchor rods up to IG-M16,


 $^{^{3)}}$ A₅ > 8% fracture elongation if <u>no</u> requirement for performance category C2 exists $^{4)}$ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR

Friulsider Injection System KEM HYBRID for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50

- Minimum value of related rip area f_{R.min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material							
Reinf	Reinforcing bars								
1	1 EN 1007-1-1"2007 10 00000 10 00000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10 0000 10	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$							

Friulsider Injection System KEM HYBRID for concrete

Product descriptionMaterials reinforcing bar

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- Compacted reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: -40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Friulsider Injection System KEM HYBRID for concrete

Intended Use
Specifications

Annex B 1

Table B1: Installation parameters for threaded rod											
											M30
Diameter of element	ļ	d = d _{nom}	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole dia	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned i	nstallation d _f	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through installation df		[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	ment	T _{inst} ≤	[Nm]	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing s _n			[mm]	40	50	60	75	95	115	125	140
Minimum edge dista	nce	c _{min}	[mm]	35	40	45	50	60	65	75	80

Tor application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.
An aximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Installation parameters for rebar Table B2:

Rebar size			Ø 8 ¹⁾	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
Ellective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm				h _e	_f + 2d ₀				
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded rod

Anchor size	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	$d = d_{nom}$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}		200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f	[mm]	7	9	12	14	18	22
Maximum torque moment	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min}	[mm]	$h_{ef} + 30 \text{ mm}$ $\geq 100 \text{ mm}$ $h_{ef} + 2d_0$					
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Friulsider Injection System KEM HYBRID for concrete

Intended Use

Installation parameters

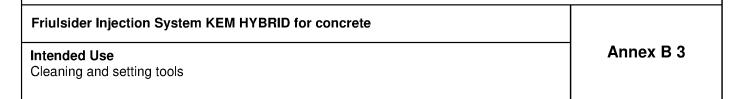
Annex B 2

Table B4: Parameter cleaning and setting tools											
	THUTTERSTONESSIN				93333 ³³³	o de la companya de					
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD		ь h - Ø	d _{b,min} min. Brush - Ø	Piston plug				
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1	
M8	8		10	SC10	11,5	10,5					
M10	8 / 10	IG-M6	12	SC12	13,5	12,5		No plua	required		
M12	10 / 12	IG-M8	14	SC14	15,5	14,5		No plug	required		
	12		16	SC16	17,5	16,5					
M16	14	IG-M10	18	SC18		18,5	VS18				
	16		20	SC20	22,0	20,5	VS20				
M20		IG-M12	22	SC22	24,0	22,5	VS22				
	20		25	SC25	27,0	25,5	VS25	h _{ef} >	h _{ef} >		
M24		IG-M16	28	SC28		28,5	VS28			all	
M27			30	SC30	31,8	30,5	VS30	250 mm	250 mm		
	24 / 25		32	SC32		32,5	VS32]			
M30	28	IG-M20	35	SC35	37,0	35,5	VS35				
	32		40	SC40	43,5	40,5	VS40				

MAC - Hand pump (volume 750 ml)Drill bit diameter (d₀): 10 mm to 20 mm

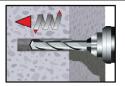
Drill hole depth (h_0) : < 10 d_s Only in non-cracked concrete

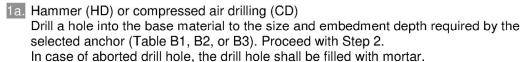
CAC - Rec. compressed air tool (min 6 bar)


Drill bit diameter (d₀): all diameters

HDB - Hollow drill bit system

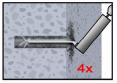
Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa \underline{and} flow rate of minimum 150 m³/h (42 l/s).

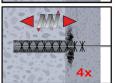


Installation instructions

Drilling of the bore hole


1b. Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

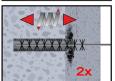
Attention! Standing water in the bore hole must be removed before cleaning.

MAC: Cleaning for dry and wet bore holes with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump (Annex B 3) a minimum of four times.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.

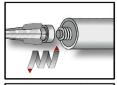


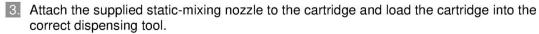
2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete

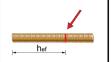
2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of two times in a twisting motion.
 If the bore hole ground is not reached with the brush, a brush extension must be used.

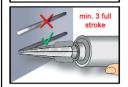

2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

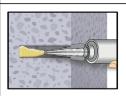

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

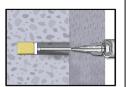
Friulsider Injection System KEM HYBRID for concrete	
Intended Use	Annex B 4
Installation instructions	

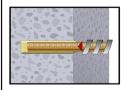


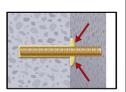
Installation instructions (continuation)




For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.


5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


- 7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:
 - Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
 - Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

9. After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Friulsider Injection System KEM HYBRID for concrete

Intended Use

Installation instructions (continuation)

Annex B 5

Table B5:	Ma	aximum w	orking time and minim	num curing time				
Concrete temperature			Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete			
- 5 °C	to	- 1 °C	50 min	5 h	10 h			
0 °C	to	+ 4 °C	25 min	3,5 h	7 h			
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h			
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h			
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min			
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min			
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min			
Cartridge	temp	erature	+5°C to +40°C					

Friulsider Injection System KEM HYBRID for concrete	
Intended Use	Annex B 6
Curing time	

Т	able C1: Characteristic values resistance of threaded		el ten	sion r	esistar	nce ar	nd ste	el she	ear			
Siz	ze			M8	M10	M12	M16	M20	M24	M27	M30	
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561	
Cr	naracteristic tension resistance, Steel failu	re 1)	•	•								
Steel, Property class 4.6 and 4.8			[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
Ste	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280	
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449	
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281	
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-	
	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	-	-	
Ch	naracteristic tension resistance, Partial fac	tor ²⁾										
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)				
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5				
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6				
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]		1,87							
Stainless steel A4 and HCR, class 80 Y _{Ms,N} [-] 1,6												
Ch	naracteristic shear resistance, Steel failure		1								т	
=	Steel, Property class 4.6 and 4.8	V ⁰ Rk,s	[kN]	9 (8)	14 (13)	20	38	59	85	110	135	
r arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168	
eve	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224	
ΙĦ	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140	
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	-	-	
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	-	-	
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900	
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123	
/er	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797	
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ _{Bk.s}	[Nm]	19	37	66	167	325	561	832	1125	
\ <u>\times</u>	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-	
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-	
Cr	naracteristic shear resistance, Partial facto	r ²⁾										
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7				
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	5				
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8				
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6				
Sta	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]									

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.
2) in absence of national regulation

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2:	Characteristic values for Concrete cone failure and Splitting with all kind of
	action

Anchor size			All Anchor types and sizes				
Concrete cone f	ailure						
Non-cracked con	crete	k _{ucr,N}	[-]	11,0			
Cracked concrete)	k _{cr,N}	[-]	7,7			
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}			
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}			
Splitting		•					
	h/h _{ef} ≥ 2,0			1,0 h _{ef}			
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right)$			
	h/h _{ef} ≤ 1,3			2,4 h _{ef}			
Axial distance	•	s _{cr,sp}	[mm]	2 c _{cr,sp}			

Friulsider Injection System KEM HYBRID for concrete

Performances
Characteristic values for Concrete cone failure and Splitting with all kind of action

Annex C 2

Steel fail	size threaded ro	d			М8	M10	M12	M16	M20	M24	M27	M3
Steer rain	lure		_									
Characte	eristic tension resi	stance	N _{Rk,s}	[kN]			A _s ·f _l	ık (or s	ee Tab	ole C1)		
Partial fa	actor		γ _{Ms,N}	[-]				see Ta	able C1			
	ed pull-out and o											
Characte	eristic bond resista	ance in non-cracl	ked concrete (C20/25								
ature e	I: 80°C/50°C	Dry, wet	τ _{Rk,ucr}	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range	II: 120°C/72°C	concrete and flooded bore	^τ Rk,ucr	[N/mm ²]	15	14	14	13	12	12	11	1
<u>.</u>	III: 160°C/100°C	hole	τ _{Rk,ucr}	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,
	eristic bond resista	ance in cracked o	concrete C20/2	25		ı			I	I	l	
ature e	I: 80°C/50°C	Dry, wet	^τ Rk,cr	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Femperature range	II: 120°C/72°C	concrete and flooded bore	^τ Rk,cr	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,
•	III: 160°C/100°C	hole	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,
Reduktio	on factor ψ ⁰ sus in	cracked and nor	n-cracked cond	crete C20/25								
ature e	I: 80°C/50°C	Dry, wet			0,79							
		concrete and flooded bore	ψ^0_{sus}	[-]	0,75							
트 III: 160°C/100°C hole					0,66							
			C25/30						02			
			C30/37	1,04								
	ng factors for cond	crete	C35/45	1,07								
Ψ _C			C40/50	1,08								
			C45/55	1,09								
			C50/60					1,	10			
Concret	te cone failure	alayant navamat						222 T	hla CO			
Splitting		elevant paramet	er					see 18	able C2	<u> </u>		
Spirtting		elevant paramet	or .		see Table C2							
Inetallat	ion factor	elevani paramet	<u>51</u>					300 10	able 02			
motanat	ion lactor	MAC					1,2			N	NPA	
for dry a	nd wet concrete	CAC			1,0							
,		HDB	γ _{inst}	[-]	1,2							
for flood	ed bore hole	CAC			1,4							

Table C4: Characteristic va	lues of	shear	r loads	s und	er stat	ic and	quas	i-statio	action	
Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm				•	•	•	•			
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]	0,6 • A _s • f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • 1	W _{el} • f _{uk}	(or see	Table C	:1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]	1,0							
Concrete edge failure										
Effective length of fastener	If	[mm]		r	nin(h _{ef} ; 1	2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]		1,0						

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor size interna					sion loa	IG-M6	IG-M8	IG-M10	IG-M12		IG-M20	
Steel failure ¹⁾	ıı tını c a	ueu anch	oi ious			IG-IVIO	IG-IVIO	IG-WITO	IG-WIZ	IG-WIO	IG-IVIZU	
				N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class 8.8				N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strengt	h class	5.8 and 8		γ _{Ms,N}	[-]				,5		l	
Characteristic tension Steel A4 and HCR, S	nless	N _{Rk,s}	[kN]	14	26	41	59	110	124			
Partial factor				γ _{Ms,N}	[-]		I	1,87			2,86	
Combined pull-out	and co	ncrete co	ne failui									
Characteristic bond r	esistan	ice in non-	cracked	concrete	C20/25							
1: 80°C/50°C		orv wetco	ncrete	^τ Rk,ucr	[N/mm²]	17	16	15	14	13	13	
III: 120°C/72°	°C a	flooded bore hole		τ _{Rk,ucr}	[N/mm²]	14	14	13	12	12	11	
•	00°C			^τ Rk,ucr	[N/mm²]	11	11	10	9,5	9,0	9,0	
Characteristic bond r	esistan	ce in crac	ked cond	crete C20)/25		1	1				
1: 80°C/50°C		Dry, wet concrete and flooded bore hole		τ _{Rk,cr}	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0	
III: 120°C/72°	°C a			τ _{Rk,cr}	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0	
គ្គ III: 160°C/10		looded bo	ie noie	τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5	
Reduktion factor ψ^0 s	sus in cr	racked an	d non-cra	acked co	ncrete C20)/25						
1: 80°C/50°C		3						0,	79			
III: 120°C/72°	°C a	Ory, wet co and		ψ^0_{sus}	s [-]	0,75						
III: 160°C/10		looded bo	re noie			0,66						
				C2	25/30	1,02						
					30/37	1,04						
Increasing factors for	r concre	ete			35/45	1,07						
Ψ_{C}					0/50 5/55				08			
					60/60				<u>09</u> 10			
Concrete cone failu	re				.5/00				1.0			
Relevant parameter								see Ta	able C2			
Splitting failure												
Relevant parameter								see Ta	ıble C2			
Installation factor												
		MAC		1			1,2			NPA		
for dry and wet conci		CAC		γ_{inst}	[-]				,0			
		HDB		111131	''				,2			
for flooded bore hole	0	CAC						1	,4			

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Table C6: Characteris	stic va	lues of	shear	loads	under s	static ar	nd quas	i-static	action
Anchor size for internal thread	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹)						•	•	
Characteristic shear resistance,	5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor		k ₇	[-]				1,0		
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]				1,25		
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		М ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]		2,38				
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min(h _{ef} ; 300mm
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30
Installation factor		γ _{inst}	[-]		•	•	1,0	•	
		·							

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

	or size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel			TNI	F1 A 13					Λ .	r 1)				
	cteristic tension resi	stance	N _{Rk,s}	[kN]				4=4		f _{uk} ¹⁾	450	101	0.10	
	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial			γ _{Ms,N}	[-]					1,	4 ²⁾				
	ined pull-out and contraction in the contraction in			rata C20/2										
						T	l							T
tture	I: 80°C/50°C	Dry, wet concrete	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
Temperature range	II: 120°C/72°C	and	τ _{Rk,ucr}	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
Ter	III: 160°C/100°C	bore hole	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Chara	cteristic bond resista	ance in crack	ed concrete	C20/25						l.				
ıture	I: 80°C/50°C	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0		
Temperature range	II: 120°C/72°C	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0		
Ten	III: 160°C/100°C	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0		
Reduktion factor $\psi^0_{\!\!\!SUS}$ in cracked and non-cracked concrete						:5								
	I: 80°C/50°C	Dry, wet		[-]	0,79									
Temperature range	II: 120°C/72°C	concrete and flooded	Ψ^0_{sus}		0,75									
Terr	III: 160°C/100°C	bore hole			0,66									
			C25		1,02									
			C30		1,04									
	sing factors for cond	crete	C35		1,07									
Ψ_{C}			C40							08				
			C45							09 10				
Concr	ete cone failure			700					١,	10				
	ant parameter								see Ta	able C2	2			
Splitti	ng													
Releva	ant parameter							;	see Ta	able C2	2			
Install	ation factor													
					1,2					NPA				
for dry	and wet concrete	γ_{inst}	[-]						,0					
	oded bore hole							,2						
for fl-		CAC		1	1,4									

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•				•					
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,50	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm	·	•										
Characteristic bending moment	М ⁰ _{Rk,s}	[Nm]					1.2	w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•			•	1,5 ²⁾				
Concrete pry-out failure	·											
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	If	[mm]			min(h	_{ef} ; 12 ·	· d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]						1,0				

 $[\]stackrel{1)}{\text{s}}\,\text{f}_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Displ	acements	under tensio	n load ¹) (threa	aded r	od)				
Anchor size threaded re	od		M8	M10	M12	M16	M20	M24	M27	M30
Non-cracked concrete (C20/25 under	static and quasi	-static a	ction						
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060	
Temperature range II:	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048	
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20/2	25 under stat	ic and quasi-stat	ic action	1						
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$

 $\delta_{N0} = \delta_{N0} \text{-factor} \quad \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

Table C10: Displacements under shear load²⁾ (threaded rod)

Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Non-cracked and c	racked concrete C2	20/25 under stati	c and q	uasi-sta	tic actio	n				
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V;$

V: action shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor} \quad \cdot \ V;$

Friulsider Injection System KEM HYBRID for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 9

Table C11: Displa	cements u	nder tension	load ¹⁾ (Ir	nternal ti	hreaded	rod)					
Anchor size Internal thre	eaded rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20			
Non-cracked concrete C20/25 under static and quasi-static action											
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048			
120°C/72°C $\delta_{N\infty}$ -factor		[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062			
Temperature range III: δ_{N0} -factor		[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179			
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184			
Cracked concrete C20/2	5 under static	and quasi-static	action								
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106			
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137			
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110			
120°C/72°C $\delta_{N_{\infty}}$ -factor		[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143			
Temperature range III: δ_{N0} -factor		[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412			
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor τ ; τ: action bond stress for tension

Table C12: Displacements under shear load²⁾ (Internal threaded rod)

Anchor size Inte	rnal threaded rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked and	cracked concre	te C20/25 unde	r static and	quasi-stati	c action			
All temperature	δ _{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06

²⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \cdot V; \end{split}$$

V: action shear load

Friulsider Injection System KEM HYBRID for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 10

Table C13:	Displacem	ents under t	ensio	n loac	d ¹⁾ (rek	oar)						
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25 under static and quasi-static action												
Temperature δ _{N0} -factor [mm/(N/mm²)] 0,031 0,032 0,034 0,035 0,037 0,039 0,042 0,043 0,045 0,048												
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	C20/25 und	er static and qu	asi-stat	ic actic	n							
Temperature	δ _{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
range II: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449

¹⁾ Calculation of the displacement

$$\begin{split} &\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} &\cdot \tau; \\ &\delta_{\text{N}_{\infty}} = \delta_{\text{N}_{\infty}}\text{-factor} &\cdot \tau; \end{split}$$
 τ : action bond stress for tension

Displacements under shear load²⁾ (rebar) Table C14:

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C2	tatic and quasi	-static	action									
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

$$\begin{split} &\delta_{V0} = \delta_{V0}\text{-factor} & \cdot V; \\ &\delta_{V\infty} = \delta_{V\infty}\text{-factor} & \cdot V; \end{split}$$
V: action shear load

Friulsider Injection System KEM HYBRID for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 11

8.06.01-294/19 Z71622.19

Anche	or size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f		<u> </u>			1110	10110		11110	11120	1012-7		11100
Charad (Seism	cteristic tension resis	tance	N _{Rk,s,eq,C1}	[kN]				1,0 •	N _{Rk,s}			
Characteristic tension resistance, (Seismic C2) Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70			N _{Rk,s,eq,C2}	[kN]	NI	PA		1,0 •	N _{Rk,s}		NI	PA
Partial	factor		γ _{Ms,N}	[-]				see Ta	ıble C1			
Comb	ined pull-out and co	oncrete failure										
Charac	cteristic bond resista	nce in cracked a	nd non-cracke	d concrete (C20/25	1						
<u>e</u>	I: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
rang	1. 60 G/50 G	Dry, wet concrete and flooded bore hole	τ _{Rk,eq,C2}	[N/mm²]	NPA		3,6	3,5	3,3	2,3	NI	PA
Temperature range	II: 120°C/72°C		τ _{Rk,eq,C1}	[N/mm ²]	6,0	6,0 6,5		7,5	7,0	6,0	6,0	6,0
			τ _{Rk,eq,C2}	[N/mm²]	NPA		3,1	3,0	2,8	2,0	NI	PA
	III: 160°C/100°C		^τ Rk,eq,C1	[N/mm²]	5,5	5,5 5,5		6,5	6,0	5,5	5,5	5,5
<u> </u>	III. 100 C/100 C		τ _{Rk,eq,C2}	[N/mm²]	NI	PA	2,5	2,7	2,5	1,8	NPA	
Reduk	tion factor $\psi^0{}_{ extsf{sus}}$ in ϕ	cracked and non	-cracked conci	ete C20/25								
range	I: 80°C/50°C	– Dry, wet						0,	79			
Temperature range	II: 120°C/72°C	concrete and flooded bore	ψ^0_{sus}	[-]	0,75							
Temp	III: 160°C/100°C	hole			0,66							
Increas	sing factors for concr	ete ψ _C	C25/30 to	C50/60				1	,0			
	ete cone failure							_		_		
	ant parameter							see Ta	ıble C2			
Splittii								200 To	bla C2	,		
Dolova	ant parameter							see 18	ble C2	•		
	ation factor											
Install	ation factor and wet concrete	CAC HDB	γinst	[-]					,0 ,2			

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1+C2)	Annex C 12

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm		•			•			•				
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}									
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	NPA 0,70 • V ⁰ _{Rk,s} NF						PA			
Partial factor	γ _{Ms,V}	[-]	see Table C1									
Ductility factor	k ₇	[-]					1,0					
Steel failure with lever arm												
Characteristic banding managet	M ⁰ _{Rk,s,eq,C1}	[Nm]			No Pe	rforman	ce Asse	essed (N	IPA)			
Characteristic bending moment	M ⁰ _{Rk,s,eq,C2}	[Nm]			No Pe	rforman	ce Asse	essed (N	IPA)			
Concrete pry-out failure	·											
Factor	k ₈	[-]					2,0					
Installation factor	γinst	[-]					1,0					
Concrete edge failure												
Effective length of fastener	I _f	[mm]	$\min(h_{ef}; 12 \cdot d_{nom}) \qquad \min(h_{ef}; 300)$							300mm		
Outside diameter of fastener	d _{nom}	[mm]	m] 8 10 12 16 20 24				27	30				
Installation factor	γ _{inst}	[-]					1,0					
Factor for annular gap	$\alpha_{\sf gap}$	[-]				0,	5 (1,0) ¹⁾					

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1+C2)	Annex C 13

Table	e C17: Charac perforı)	teristic va mance ca			oads	und	er se	ismi	c act	ion					
Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel fa	ailure			,											
Charac	teristic tension resi	istance	N _{Rk,s,eq}	[kN]	$1.0 \cdot A_s \cdot f_{uk}^{1)}$										
Cross s	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804	
Partial ⁻	factor		γ _{Ms,N}	[-]					1,	4 ²⁾					
Combined pull-out and concrete failure Characteristic bond resistance in cracked and non-cracked															
Charac	teristic bond resista	cracked co	ncrete	C20/2	25			ı	1	ı					
nre	I: 80°C/50°C	Dry, wet	τ _{Rk,eq}	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0	
Temperature range	II: 120°C/72°C	concrete and flooded	τ _{Rk,eq}	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0	
Ter	III: 160°C/100°C	bore hole	^τ Rk,eq	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0	
Redukt	ion factor ψ ⁰ sus in	cracked and	l non-cracke	d concrete	e C20/25										
nre	I: 80°C/50°C	Dry, wet			0,79										
nperat	II: 120°C/72°C	concrete and flooded	Ψ^0_{sus}	[-]	0,75										
Temperature range	III: 160°C/100°C	bore hole							0,	66					
Increas	sing factors for cond	crete ψ _C	C25/30 to	C50/60					1	,0					
Concre	ete cone failure														
	nt parameter								see Ta	able C	2				
Splittin					1										
	Relevant parameter								see Ta	able C	2				
Installa	ation factor	1			1										
for dry	or dry and wet concrete CAC			[-] 1,0											
for floo	ded bore hole	CAC	^γ inst						1	,4					

 $[\]stackrel{1)}{\rm f}_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic values of shear loads under seismic action (performance category C1)													
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm													
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35	·As	f _{uk} 1)				
Cross section area	A _s	[mm²]	50 79 113 154 201 314 452 491 616 80							804			
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾										
Ductility factor	k ₇	[-]	1,0										
Steel failure with lever arm													
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]	No Performance Assessed (NPA)										
Concrete pry-out failure	·												
Factor	k ₈	[-]						2,0					
Installation factor	γ _{inst}	[-]						1,0					
Concrete edge failure	•												
Effective length of fastener	I _f	[mm]		ļ	min(h _e	f; 12 ·	d _{nom})		min(h _{ef} ; 300	mm)	
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32	
Installation factor	γ _{inst}	[-]						1,0					
Factor for annular gap	$\alpha_{\sf gap}$	[-]					0	5 (1,0)3)				

Friulsider Injection System KEM HYBRID for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Table C19: Display	Table C19: Displacements under tension load ¹⁾ (threaded rod)														
Anchor size threaded ro	Anchor size threaded rod						M20	M24	M27	M30					
Cracked concrete C20/2	mic C1 action														
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106					
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137					
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110					
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143					
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412					
160°C/100°Č	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424					

Table C20: Displacements under tension load¹⁾ (rebar)

Anchor size reinfo	Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Cracked concrete	Cracked concrete C20/25 under seismic C1 action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108	
range I: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141	
Temperature range II: 120°C/72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113	
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148	
Temperature	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425	
range III: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}}$ -factor $\cdot \tau$; (τ : action bond stress for tension)

Table C21: Displacements under shear load²⁾ (threaded rod)

Anchor size thread	M8	M10	M12	M16	M20	M24	M27	M30				
Non-cracked and cracked concrete C20/25 under seismic C1 action												
All temperature	$\delta_{ m V0}$ -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03		
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05		

Table C22: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/25 under seismic C1 action												
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V^{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

²⁾ Calculation of the displacement

 $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} \ \cdot \ V; \ \ (V: action \ shear \ load) \end{array}$

Friulsider Injection System KEM HYBRID for concrete	
Performances	Annex C 16
Displacements under seismic C1 action (threaded rods and rebar)	

Table C23: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod				M10	M12	M16	M20	M24	M27	M30
Cracked concrete C20/25 under seismic C2 action										
All temperature $\delta_{N,eq(DLS)}$ [mm]		NPA		0,24	0,27	0,29	0,27	NIE	٦,٨	
ranges	$\delta_{N,eq(ULS)}$	[mm]	I NPA		0,55	0,51	0,50	0,58	NF	A

Table C24: Displacements under shear load (threaded rod)

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Cracked concrete C20/25 under seismic C2 action										
All temperature	$\delta_{V,eq(DLS)}$	[mm]	NII	٦,٨	3,6	3,0	3,1	3,5	NF	۸ ۸
ranges	$\delta_{V,ep(ULS)}$	[mm]	ואו	PA	7,0	6,6	7,0	9,3	INF	A

Friulsider Injection System KEM HYBRID for concrete	
Performances Displacements under seismic C2 action (threaded rods)	Annex C 17
Sisplacements and colomic of action (timedada reas)	